首页> 外文OA文献 >Automated Poisoning Attacks and Defenses in Malware Detection Systems: An Adversarial Machine Learning Approach
【2h】

Automated Poisoning Attacks and Defenses in Malware Detection Systems: An Adversarial Machine Learning Approach

机译:恶意软件检测系统中的自动中毒攻击和防御:   对抗机器学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The evolution of mobile malware poses a serious threat to smartphonesecurity. Today, sophisticated attackers can adapt by maximally sabotagingmachine-learning classifiers via polluting training data, rendering most recentmachine learning-based malware detection tools (such as Drebin, DroidAPIMiner,and MaMaDroid) ineffective. In this paper, we explore the feasibility ofconstructing crafted malware samples; examine how machine-learning classifierscan be misled under three different threat models; then conclude that injectingcarefully crafted data into training data can significantly reduce detectionaccuracy. To tackle the problem, we propose KuafuDet, a two-phase learningenhancing approach that learns mobile malware by adversarial detection.KuafuDet includes an offline training phase that selects and extracts featuresfrom the training set, and an online detection phase that utilizes theclassifier trained by the first phase. To further address the adversarialenvironment, these two phases are intertwined through a self-adaptive learningscheme, wherein an automated camouflage detector is introduced to filter thesuspicious false negatives and feed them back into the training phase. Wefinally show that KuafuDet can significantly reduce false negatives and boostthe detection accuracy by at least 15%. Experiments on more than 250,000 mobileapplications demonstrate that KuafuDet is scalable and can be highly effectiveas a standalone system.
机译:移动恶意软件的发展对智能手机的安全性构成了严重威胁。如今,老练的攻击者可以通过污染培训数据来最大程度地破坏机器学习分类器,从而使最新的基于机器学习的恶意软件检测工具(例如Drebin,DroidAPIMiner和MaMaDroid)失效。在本文中,我们探讨了构建精心制作的恶意软件样本的可行性;检查如何在三种不同的威胁模型下误导机器学习分类器;然后得出结论,将精心制作的数据注入训练数据会大大降低检测准确性。为了解决这个问题,我们提出了KuafuDet,这是一种两阶段的学习增强方法,可通过对抗检测来学习移动恶意软件。相。为了进一步解决对抗环境,这两个阶段通过自适应学习方案相互交织,其中引入了自动伪装检测器以过滤可疑的假阴性并将其反馈到训练阶段。我们最终证明,KuafuDet可以显着减少假阴性并提高检测精度至少15%。在超过250,000个移动应用程序上进行的实验表明,KuafuDet具有可伸缩性,并且作为独立系统可以非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号